
Trajectory Generation for Vehicle with Stable Time

Zhichao Han1,2, Mengze Tian1,2 and Fei Gao∗,1,2

1Institute of Cyber-Systems and Control,
College of Control Science and Engineering,

Zhejiang University, Hangzhou 310027, China.
2Huzhou Institute of Zhejiang University, Huzhou 313000, China.

∗ Corresponding author. Email: fgaoaa@zju.edu.cn (Fei Gao)

Introduction

In the natural world, higher organisms demonstrate remarkable intelligence in motion plan-

ning, enabling them to navigate coherently and naturally in various environments. Whether

it is a dense forest or complex city streets, organisms effortlessly adapt to their surroundings,

employing flexible and purposeful strategies to avoid obstacles and reach their destinations

swiftly [1, 2, 3]. However, for current robots, when faced with complex scenes, their compu-

tational efficiency rapidly declines due to extensive interactions with obstacles, resulting in a

temporary loss of motion direction or even getting stuck in place. This phenomenon evidently

limits the application scope and effectiveness of robots in the real world.

In fact, when it comes to pathfinding in the environment, humans appear to be more direct

and effortless compared to robots. Even for children, when provided with a map representing

the environment, they can often naturally depict a curve on the map connecting the starting and

ending points. This ability is closely related to humans’ superior spatial comprehension [4, 5, 6].

1

Humans can effectively extract environmental features, identify key areas, and utilize intuition

and experience to quickly find the path [7, 8]. This intelligent approach to path planning enables

us to adapt flexibly to various situations. Whether in an open sports arena or within complex

buildings, we can always quickly find the reasonable path and navigate accurately. In contrast,

robots often construct a search tree by randomly sampling to gain an understanding of the

connectivity within the environment. Subsequently, they employ graph search algorithms [9] to

obtain a path.

Clearly, for humans, the idea of robots using sampling to analyze the environment and

performing a search from the starting point is unimaginable and unnatural. Moreover, the ef-

ficiency of this planning method employed by robots is evidently negatively correlated with

the complexity of the environment. As the environment becomes more complex, robots often

require more sampling to obtain a more accurate description of the scene, which limits their

performance in complex environments.

Certainly, in many cases, the paths humans directly acquire from their minds are not precise

but rather serve as high-level global guidance. Therefore, during actual movement, humans

often make fine adjustments to the previously obtained rough path to ensure smoothness and

absolute safety. In other words, the overall navigation process in humans follows a hierarchical

framework. For instance, when navigating through a building, individuals typically have a

rough understanding of their intended direction in advance, such as knowing to make a right

turn after passing through a specific corridor. This serves as high-level planning, providing

overarching guidance for their actions. Subsequently, during the actual progression, humans

continuously refine their movements to avoid non-structural obstacles.

Inspired by these observations, we propose a novel learning-enhanced hierarchical plan-

ning framework which enables efficient and stable trajectory generation with nonholonomic

constraints in various complex scenarios. Within this framework, we define the front end as

2

path planning, which focuses on determining approximate topological routes as the high-level

planner. The back end concentrates on trajectory optimization, refining the path into a high-

quality, safe and time-parameterized trajectory dutifully considering the system’s higher-order

kinematic constraints. Similar to humans, we employed a neural network to model the path

planning problem as an image generation task, effectively analyzing environmental features to

depict paths. Our algorithm’s key feature lies in its computational efficiency principle, decou-

pling it from the complexity of the environment, thus enabling stable and efficient generation

of reasonable initial paths in arbitrary complex environments. Actually, these paths may not be

entirely smooth or feasible, and the considered kinematic model is relatively coarse and low-

dimensional. Therefore, subsequently, we designed a novel bi-layer trajectory optimization

framework to further enhance the quality of the path. Our optimization approach effectively re-

fines the path into a high-quality spatial-temporal optimal trajectory, considering more refined

system higher-order kinematics. Moreover, our method combines differential flatness [10] for

efficient problem solving and employs bi-layer smooth mappings to eliminate singularities in

the flat model. This not only enhances numerical stability but also ensures the robust generation

of feasible solutions.

Practically, the goal of an ideal motion planning system is to generate high-quality trajec-

tories in a stable and robust manner, even in arbitrary complex environments. It is crucial to

maintain low planning times, even as the environment becomes more complex, to ensure the

stability of navigation systems. Robustness in solution quality is also essential, as we expect

the planner to converge reliably to high-quality feasible solutions, regardless of the complexity

of the planning problem. In the current state of the art, some motion planning methods also

adopt a hierarchical structure [11, 12, 13, 14] similar to ours. However, both the front end and

the back end face a trade off between stability, efficiency, and quality.

The traditional front end is typically modeled as a combinatorial optimization problem.

3

Such algorithms often solve this problem by searching or sampling within a low-dimensional

configuration space [15, 16, 17, 18, 19, 20, 21, 22]. However, these methods may underper-

form in complex environments, resulting in an abundance of non-contributory samples and a

significant increase in computational time and memory consumption. Moreover, to ensure the

quality of the initial path and completeness in narrow environments, such algorithms often re-

quire a higher resolution in the state space, leading to combinatorial explosion, affecting time

stability and reducing real-time performance. In contrast to these approaches that continuously

explore and maintain a growth tree starting from the initial state, our method exhibits greater

intelligence and directness. Inspired by the natural human ability to comprehend environments,

we employ a neural network to simulate the process of humans drawing a curve connecting

the starting and ending points. Our method leverages the macroscopic information from the

environment and expert knowledge to efficiently depict reasonable paths in arbitrary complex

environments. Undeniably, recent advancements [23, 24, 25, 26, 27, 28, 29, 30] demonstrate

significant promise by leveraging neural networks to guide search or sampling processes. How-

ever, we argue that they do not fully exploit the potential of neural networks. These methods

fundamentally still rely on sampling or search strategies, which impact efficiency and make the

method inherently susceptible to the complexity of the environment, thereby reducing stability.

In contrast, our algorithm directly leverages the network to depict paths from the environment

without the need for cumbersome sampling or search procedures. Essentially, this decouples

the problem complexity from the environment, ensuring higher efficiency and stability.

For the backend optimization, some methods depend excessively on prescriptive guide-

lines [31, 32, 33], circumscribing their adaptability to intricate and heterogenous scenarios.

Owing to the complexities of nonholonomic kinematics, most of strategies mandate a markedly

simplified motion paradigm [34, 35] or discrete motion process [36, 37, 38, 39, 40] to uphold

algorithmic efficiency. Nonetheless, to ensure elevated executability and high success proba-

4

bilities in dense settings, these strategies necessitate refined discretization, thereby adversely

negatively impact the temporal efficiency of the planning process. Recently, Han et al. [41]

model fully differentiable trajectory optimization in the flat spaces with refined trajectory repre-

sentations, validated for efficiency by extensive experiments. However, this method encounters

singularities in its underlying principles, leading to numerical instability that hinders effective

convergence to feasible solutions. In contrast, we design a novel dual-layer polynomial-based

trajectory representation and remap the differential-flatness model smoothly. Our method is

adept at not only facilitating the efficient generation of superior, collision-free trajectories but

also at addressing the intrinsic ambiguities associated with flatness models, thus augmenting

the numerical stability and solution robustness.

In conclusion, we present an efficient and high-quality solution for motion planning of non-

holonomic vehicles, which demonstrates a high level of time stability and robust convergence

in arbitrary complex environments. In this paper, our research focuses primarily on the widely

prevalent ackerman vehicles in autonomous driving. Furthermore, we demonstrate through ex-

periments that our method is scalable to other vehicles with nonholonomic motion constraints,

such as fixed-wing aircraft. Through extensive simulation and comparison, our deep path plan-

ning module shows a decoupling characteristic from the complexity of the environment. Com-

pared to traditional methods, our method has an order of magnitude improvement in efficiency

and time stability when the environment is more complex. Our trajectory optimization module

is capable of reliably obtaining high-quality solutions that fully satisfy higher-order kinematic

constraints, even in narrow and complex maneuvering scenarios. In contrast, the flatness-based

algorithm, under the same computation time setting, often suffer from numerical instability,

which can potentially lead to violations of kinematic constraints by an order of magnitude.

5

Backend

Flatness Model

Trajectory Representation

Smoothness Dynamic
Feasibility

Obstacle
Avoidance

Objective FunctionsEnvironment

Random ForestDense Office Complex Ruins

Trajectory Time

Frontend

Input
Env Start & Goal

Global Guidance

Local Regression

Probability
Map

Feature Extraction

… More
User-defined

R

Flatness
Transform

Spatio Modeling

Temporal Remapping

t� t� t� t� t� t� t�

Spatio-temporal
Optimization

Kinematic Model velocity

Fig. 1. Learning-enhanced hierarchical planning framework design. The frontend, acting
as the high-level planner, focuses on determining an approximate topological route and is ca-
pable of generating initial paths efficiently and stably in complex environments such as dense
office spaces, random forests, and complex ruins. The backend takes into consideration the
higher-order kinematic constraints of the system, and incorporates a set of objective functions
to optimize the path for space-time optimality, high quality, and safety.

6

Results

Experiment Details

We train our model on an Nvidia GTX 4090 GPU, while all simulation tests are conducted on a

computer equipped with a GTX 2060 GPU, an Intel 10700 CPU, and running Ubuntu 20.04 op-

erating system. For the comparative experiments in the subsequent path planning of Ackermann

vehicles, our dataset contains three scenarios. In each scenario, we randomly generated 10000

environments. For each environment, we sampled 50 sets of different start and goal states to

construct planning problems. For each problem, we utilize hybridAstar to generate an initial

coarse curve and then employ the proposed trajectory optimization method to refine it, resulting

in a high-quality solution. Subsequently, we uniformly sample 200 points along this trajectory,

which serve as the ground truth for the supervised training of the frontend network. Regarding

the backend optimization process, we employ an augmented Lagrangian approach within our

dual-layer trajectory representation framework to relax the constraints of the original problem.

Then, we efficiently solve the reformulated problem using the L-BFGS algorithm.

Time Stability in Complex Environments

We test our network in multiple scenarios, and the results show that even as the environment

becomes more complex, our path planning algorithm maintains extremely low computation

times and exhibits high stability. Furthermore, in complex scenarios, our algorithm exhibits

a significant reduction in the variance of computation time compared to traditional baseline

algorithms, highlighting its robustness across different planning problems.

The size of our testing environment is 20m ∗ 20m, with a resolution of 0.1m. To verify the

generalization capability and time stability of our network, we construct three different scenar-

ios: (1) Random Forest: Approximately 60 irregular obstacles are present in the environment.

(2) Dense Office: Randomly placed walls with narrow passages slightly larger than the robot’s

7

Fig. 2. The comparison of frontend path planning performance. From top to bottom, the
scenes are as follows: dense office, random forest, and complex ruins. The red paths represent
the ground truth, the yellow paths represent the planning results of Kino A*, the cyan paths rep-
resent the planning results of NN Kino A*, and the green paths represent the results generated
by the proposed method.

8

size for traversal. (3) Complex Ruins: The robot often needs to take detours to reach the goal.

We compare our model with a reliable hybrid A* [19] that has been extensively validated and

has complete resolution coverage. Additionally, to demonstrate the advancement of our algo-

rithm, we compare it with recent works that integrate neural networks and search techniques.

Similar to our approach, this method use a transformer encoder to extract features of path plan-

ning problems. In all comparative experiments, the kinematic constraints are set equally for all

algorithms, and the parameters are appropriately tuned for all approaches. Moreover, all paths

generated by the frontend algorithms are further optimized using proposed trajectory optimiza-

tion to enhance their quality. In each scenario, we test over 1000 instances, ensuring that the

environments during testing are unseen during training. From Figure 1, it is evident that the

paths output by our model are smoother and closer to the ground truth compared to other algo-

rithms. This is because our algorithm eliminates the need for search and directly supervises the

trajectory generation process using ground truth data, thereby imitating the behavior of ground

true trajectories. Furthermore, we quantitatively analyze the computation time, variance, and

success rate of various methods’ modules. Since our final trajectory optimization algorithm’s

objective function consists of energy loss and execution time loss, the means of both losses are

also measured to evaluate the quality of the final output trajectory. All these metrics are sum-

marized in Table 1. From the table, it can be observed that our frontend algorithm maintains a

high success rate while being capable of outputting paths with almost the same low computation

time across different environments. In contrast, search-based algorithms, as a comparison, ex-

perience a significant increase in computation time as the environment becomes more complex

due to their lack of holistic understanding of the environment and the consumption of numerous

irrelevant samples. Although the second algorithm utilizes a network to extract key areas, it still

relies on discrete state space search fundamentally. Therefore, in highly constrained environ-

ments, a large number of permutations and combinations are still required to produce solutions,

9

Table 1: Quantitative benchmarks in various scenarios.

Random Forest

Method
Front End Back End Success

Rate

(%)

Seach

Time (ms)

Model

Time (ms)

Total

Time (ms)

Time

Ratio (%)

Variance

in Time (ms2)

Optimization

Time (ms)

Energy

Cost

Time

Cost

Total

Cost

Proposed 0 6.896 6.896 100.0 1.733 17.58 38.18 218.0 256.18 97.9

HbridA* 18.98 0 18.98 275.2 1105 20.58 41.10 234.0 275.1 97.7

THybridA* 12.58 4.438 17.02 246.8 1201 19.91 39.20 223.8 263.0 98.6

Complex Ruins

Proposed 0 6.830 6.830 100.0 1.389 24.00 53.37 302.3 355.67 98.0

HbridA* 156.6 0 156.6 2293 16687 32.71 63.82 364.7 428.52 95.9

THybridA* 47.72 4.478 52.20 764.3 1822 30.62 65.24 367.5 432.74 97.9

Dense Office

Proposed 0 7.193 7.193 100.0 1.755 27.68 58.32 326.3 384.6 97.5

HbridA* 277.1 0 277.1 3852 31232 39.92 67.64 418.3 485.9 79.6

THybridA* 90.60 4.560 95.16 1323 4417 35.78 62.42 391.2 453.62 93.4

lowering time stability. Moreover, due to the uncertainty in computation time of search algo-

rithms, they exhibit significant time variance even for a single scenario. This instability makes

it difficult to predict algorithm performance, consequently affecting the robustness of the entire

navigation system. Furthermore, since search algorithms operate in a low-dimensional search

space, their loss functions often differ from backend optimization, resulting in suboptimal paths

assumed to be optimal by the frontend. In contrast, our algorithm directly mimics the behavior

of backend optimization, reducing the gap between frontend and backend. The table also indi-

cates that in all scenarios, our frontend algorithm requires the least amount of time for trajectory

optimization. Moreover, the loss function of our final output trajectory is minimized, indicating

the highest quality.

Application for Fixed Wing

We also verify the network’s compatibility with other types of environmental descriptions, such

as terrain elevation maps, and extend its application to large-scale fixed-wing navigation tasks.

The results show that our algorithm can find a near-optimal solution in a 20km∗20km environ-

10

Height/m Proposed
RRT*(0.5s)

Fig. 3. Visualization of fixed wing applications. The top figure presents a visualization of
fixed-wing flight in Unity3D, demonstrating the ability of fixed-wing aircraft to navigate around
peaks to ensure safety. The figure in the bottom left corner displays a height map of the planning
scene, where the heights of different locations are represented by colors. Additionally, we also
depict the path generated by RRT* planning with a computation time of 0.5 seconds as an
orange-red line for comparison. The figure in the bottom right corner showcases a comparative
analysis of our method and RRT* at different computation times in terms of path length and
height cost.

ment in just 50ms, while traditional sampling algorithms require approximately 100s to achieve

similar results, resulting in an efficiency improvement of around 2000 times.

In this study, we consider a common scenario where a fixed-wing aircraft is required to

traverse mountainous and hilly terrains, ultimately reaching a target state at a given altitude, as

shown in Fig. 3. To highlight our algorithm’s superiority in this problem, we compare it with the

classical sampling-based algorithm RRT* [17], which is theoretically proven to be optimal with

infinite samples. Considering the minimum turning radius constraint of the fixed-wing aircraft,

we modify the connection between two states in RRT* from a straight line segment to a Dubins

11

curve [42]. In this case, ensuring safety and communication with the ground, we aim for the

fixed-wing flight path to be not only smooth and short but also to select lower altitude or flatter

terrain whenever possible to achieve higher clearance from the ground. Therefore, we employ

two metrics to measure the path: length cost, which quantifies the path length, and height

cost, which measures the elevation of the ground. A smaller height cost indicates that the path

traverses lower-altitude terrains, resulting in a higher relative clearance and increased safety.

Since the RRT* algorithm exhibits asymptotic optimality, we allocate different computation

time budgets (0.5s, 1s, 10s, 100s) for it. We conduct 100 experimental trials and visualize the

length cost and the height cost relative to the planned path using violin plots, as shown in Fig. 3.

From the perspective of the two loss functions, the quality of the path directly outputted by

our model is comparable to that of RRT* with a computation time of 100s. However, in this

scenario, our model only requires 50ms of inference time, leading to approximately a 2000-fold

improvement in efficiency compared to traditional algorithms

Numerical Stable Trajectory Optimization

Although we obtain a rough path quickly through the front end, backend trajectory optimiza-

tion is still necessary to improve its quality and ensure compliance with finer kinematic models

and collision avoidance. Some existing work [41] simplifies the trajectory optimization prob-

lem using differential flatness, effectively eliminating motion equation constraints and greatly

increasing computational efficiency. However, this modeling approach has inherent singular-

ities that prevent guaranteeing complete feasibility of the constraints. For instance, as shown

in Fig. 4b, it relies on inferring the yaw angle from the direction of the velocity, which fails

when the velocity is zero, leading to numerical instability during solution computation. In con-

trast, we introduce intermediate variables (pseudo velocity) to re-smoothly map the flat model

and design a specialized trajectory representation. This approach ensures efficient optimization

12

Proposed DFB

a. b.

c.

Proposed

DFB(0.01)

𝑣 − 𝑡

𝑣𝑚𝑎𝑥 = 2.0

𝑣/(𝑚/𝑠)

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0
𝑡/𝑠20 2510 1550

𝜙𝑚𝑎𝑥 =
𝜋

4

𝜙/𝑟𝑎𝑑 𝜙 − 𝑡

𝑡/𝑠0 5 10 15 20 25

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

𝜔/(𝑟𝑎𝑑/𝑠) 𝜔 − 𝑡

𝜔𝑚𝑎𝑥 = 0.4

100

10

1

0.1

0

-0.1

-1

-10
𝑡/𝑠0 5 10 15 20 25

𝑣𝑚𝑎𝑥 = 2.0

𝑣 − 𝑡 𝜔 − 𝑡𝜙/𝑟𝑎𝑑 𝜙 − 𝑡

𝜙𝑚𝑎𝑥 =
𝜋

4

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

0.01

0.0

-0.01

0 5 10 15 20 25𝑡/𝑠

𝑣/(𝑚/𝑠)
1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5
𝑡/𝑠0 5 10 15 20 25

𝜔/(𝑟𝑎𝑑/𝑠)

𝑡/𝑠

𝜔𝑚𝑎𝑥 = 0.4

100

10

1

0.1

0

-0.1

-1

-10
𝑡/𝑠0 5 10 15 20 25

𝜙𝑚𝑎𝑥 =
𝜋

4

𝜙/𝑟𝑎𝑑 𝜙 − 𝑡
1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5
𝑡/𝑠0 5 10 15 20 25

𝜔 − 𝑡𝜔/(𝑟𝑎𝑑/𝑠)

𝜔𝑚𝑎𝑥 = 0.4

100

10

1

0.1

0

-0.1

-1

-10
𝑡/𝑠0 5 10 15 20 25

𝑣/(𝑚/𝑠) 𝑣 − 𝑡

𝑣𝑚𝑎𝑥 = 2.0
1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0
𝑡/𝑠0 5 10 15 20 25

0.1

0.0

-0.1

2.0

non-singular velocity = 1.0𝑚/𝑠

non-singular velocity = 0.1𝑚/𝑠

non-singular velocity = 0.01𝑚/𝑠

Fig. 4. Comparison visualization of our method and DFB. a. The visualization of planned
trajectories. Here, for DFB, the switching speed during forward and backward motion is set
to 0.01m/s to avoid computational singularities. b. Visualization of singular point elimination
in the flat space. Prior to the transformation, when the vehicle’s velocity is 0, singular points
arise, preventing the calculation of the vehicle’s heading angle. However, by employing our
bi-layer transform and introducing pseudovelocity, the magnitude of the pseudovelocity always
surpasses a threshold, allowing for the recovery of the vehicle’s heading angle without encoun-
tering singularities, regardless of the actual velocity. c. A comparison of velocity, steer angle,
and steer angle rate curves between our trajectory and the trajectories generated by DFB under
different parameters.

13

while fundamentally resolving the problem, allowing stable generation of feasible solutions in

highly complex environments. We rigorously validate our trajectory optimization algorithm in

a challenging scenario that involves multiple forward and backward vehicle maneuvers to high-

light its contributions. The results demonstrate that our algorithm achieves better numerical

stability and robust generation of feasible solutions compared to a powerful baseline differen-

tial flat-based (DFB) trajectory optimization method [41] that has been extensively validated

through experiments.

To replicate a common parking scenario observed in real-life, we construct a testing envi-

ronment as illustrated in Fig. 4.a. In this environment, this vehicle is instructed to depart from

a designated starting point and successively approach predetermined intermediate points with

prescribed yaw angles. Finally, it is required to reverse into a specified endpoint. From this

figure, it is evident that the presence of singular points leads to more convoluted trajectories

generated by DFB planning. In contrast, our method produces significantly smoother trajecto-

ries. To ensure fairness, the optimization time for each method is fixed at 75ms, and the total

trajectory time and kinematic constraints are kept consistent across the methods. Since the base-

line method [41] faces computational singularity when the velocity is zero, we fix it at a small

value (non-singular velocity) during forward and backward motion and analyze the impact of

this parameter.

We present curves depicting the variation of velocity v, steer angle ϕ, and steer angle rate

ω of the planned trajectory over time for different cases, as shown in Fig. 4.c. These curves

intuitively reveal the numerical instability caused by singularities. When non-singular veloc-

ity is 0.1m/s, the steer angle rate of the trajectory can no longer be strictly satisfied. When

non-singular velocity is 0.01m/s, the steer angle constraint is also violated, and higher-order

steer angle rates exceed the constraints by an order of magnitude. Although setting a larger

non-singular velocity = 1.0m/s can avoid singularity issues, it introduces discontinuity during

14

motion, resulting in severe mechanical component vibrations. In contrast, our method consis-

tently exhibits good numerical stability, ensuring smooth velocity profiles and robust conver-

gence to kinematically feasible solutions. In fact, kinematic infeasibility of the trajectory or

abrupt changes in velocity can hinder the effective execution of the trajectory by lower-level

controllers, leading to increased tracking errors and collision risks. To demonstrate this point,

we introduce an model predictive control (MPC)-based controller to measure this error. Ac-

cording to the statistical data provided in our supplementary information, our method achieves

a 90% reduction in maximum position tracking error and an 80% reduction in maximum angle

tracking error compared to the baseline DFB, enhancing the reliability and completeness of the

entire navigation system.

Discussion

Compared to humans who directly analyze spatial information and determine the approximate

motion direction, robots always rely on extensive sampling or searching to understand the envi-

ronment, which appears clumsy and counterintuitive. Therefore, drawing inspiration from the

human thought process, we design a neural network to directly generate paths from the envi-

ronment without the need for extensive sampling. We conduct numerous comparative experi-

ments to validate our method’s efficiency and stability advantages over traditional algorithms

in various environments. Even as the environment becomes more complex, our path planning

algorithm maintains almost the same computation time, while the baseline method’s efficiency

decreases by several orders of magnitude. Moreover, we conduct ablation experiments to an-

alyze the impact of specific network structures on the results, and the results show that our

special design effectively reduces the loss by 50%compared to the baseline. Further details on

this ablation study can be found in the supplementary information.

For motion planning in robotics, the core objective is to obtain a high-quality trajectory that

15

satisfies a set of hard constraints, such as collision avoidance and kinematic feasibility. How-

ever, achieving this objective directly with a neural network is challenging. This is because,

given a fixed model size, neural networks have inherent limitations in their learning capacity,

making it difficult to converge to the optimal solution that satisfies all constraints. Therefore,

we introduce backend optimization to further refine the path outputted by the frontend network

into a fully constraint-compliant high-quality trajectory. Our backend trajectory optimization

algorithm inherits the efficiency of flat-based algorithms while avoiding the numerical instabil-

ity caused by singular points, enabling robust convergence to feasible solutions even in extreme

scenarios.

Methods

Neural Path Planning

Our learning-based path planner takes as input the navigation start and goal state, as well as the

grid-based environment , and directly outputs rough solutions. Moreover, each state point in the

path is associated with the SE(2) state of the robot. Inspired by the work [30], we adopt a start-

goal encoding strategy by highlighting patches on a tensor of size H ∗W . To fully represent the

SE(2) space, we introduce two additional H ∗W tensors to capture the cosine and sine values

of the robot orientations at the start and goal locations.

We introduce a self-attention mechanism to capture important relationships and patterns

within input sequences. By stacking multiple layers and employing a multi-head attention

mechanism, we encode environmental and odometry information at different abstraction levels,

thereby better understanding the structure and semantics of the environment. The self-attention

mechanism allows the model to globally capture information when processing sequence data,

rather than being limited to a fixed environment size. This aids the model in better under-

standing the meaning of input information and optimizing space across different environments.

16

This mechanism enables parallel computation, performing the same reinforcement operations

across all other positions within each optimization subdomain, greatly enhancing the model’s

computational efficiency. It is easy to embed this mechanism into other models and deploy it

onto robots, providing deployment strategies for embodied robots. This mechanism reinforces

learning efficiency and capability, especially advantageous when dealing with complex, high-

dimensional, or even continuous state and action spaces.

Through the utilization of course learning, neural networks have acquired the capability

to generate solutions even in adversarial circumstances. Consequently, we have redefined the

problem of motion planning as a challenge in generative modeling. The incorporation of course

learning has not only bolstered the network’s generative capacity but also maintained consis-

tency in training. As training progresses, the network’s understanding of the environment deep-

ens, enabling it to grasp the constraints within the optimization domain. Furthermore, as the

workload of course learning gradually escalates, the network progressively enhances its ability

to mitigate noise in noisy environments, thereby improving its overall performance.

Neural Network Architecture

Our network comprises three main components: the Feature Extraction Layer (FEL), the Global

Distribution Layer (GDL), and the Local Correction Layer (LCL). In practice, directly local-

izing the position of a specific state point within the environment is challenging and labor-

intensive. Therefore, drawing inspiration from the R-CNN [43], our network follows a two-

stage inference architecture. Initially, we uniformly partition environment into region propos-

als.

Subsequently, we employ GDL to obtain the probability distribution of each state point with

respect to the region proposals. GDL is a generative functional network designed to gener-

ate feasible solutions within the optimization domain, with its output solutions conforming to

17

the total probability Bayesian formula. To enable GDL to find solutions within the optimiza-

tion space, we incorporated real instances into the training process. The GDL network serves

the purpose of optimizing and selecting feasible regions, thus accelerating the overall network

training speed.

Next, leveraging LCL, we further obtain the accurate position of the state point. LCL is

a network for local denoising. It refers to the results of global probability optimization and

acts as a mapping function by limiting the local receptive field for denoising. Due to the self-

attention of LCL being focused on local positions, this receptive field serves the purpose of

local denoising. LCL is an efficient self-organized network, and its output contains parallel

denoising results for multiple path points. To ensure the dynamical continuity of the network’s

forward propagation process, we integrated median filtering into the image generation process

of the network.

Loss Functions

We desire to plan a path that can learn the behavior policy of the ground truth while satisfying

fundamental constraints of nonholonomic motion and obstacle avoidance. Therefore, our loss

function L consists of supervised terms that mimic the ground truth and unsupervised terms that

purely measure the validity of the path:

L = wceLce + wmseLmse + wsmoLsmo + wholLhol

+ wcurLcur + wuniLuni + wobsLobs, (1)

where w∗ is the weight corresponding to each loss. Here, Lce is the anchor point classification

loss. Because we model the role of the global distribution layer as a multi-classification prob-

lem, Lce is used to maximize the probability of the region containing the ground truth point.

Lmse is the path supervision loss which is utilized to supervise the mean squared error between

the SE(2) states of the points on the output path and their corresponding ground truth values.

18

Lsmo is the smoothness loss which is employed to enhance the smoothness of the planned path.

Lhol is the nonholonomic dynamic loss to emphasize the alignment between the direction of the

line connecting adjacent points and the orientation angle direction. Lcur is the curvature con-

straint loss to to penalize exceeding the specified curvature threshold. Luni is the uniform loss,

which is employed to encourage a more uniform spatial distribution of points along the path.

This is achieved by penalizing the variance of the points’ positions in space. Lobs is the obstacle

avoidance loss, which is utilized to penalize potential collisions with obstacles. The specific

rigorous mathematical expressions and corresponding weights for each loss can be found in the

supplementary information.

Bi-Layer Trajectory Optimization
Remapping of differential flat models

The characteristic of differentially flat systems is the ability to analytically represent the system

state using the combination of flat outputs and their finite-dimensional derivatives. Here, we

take the example of Ackermann kinematics [44]. By selecting the flat outputs σ := (px, py)
T

as the position at the center of the real wheels, , the other high-order states of the robot during

forward motion can be expressed as follows:

v = ||σ̇|t||2, θ = arctan 2(σ̇y|t, σ̇x|t), (2a)

a =
σ̈T

|t σ̇|t

||σ̇|t||2
, ϕ = arctan

(
σ̈T

|tBσ̇|tL

||σ̇|t||32

)
, (2b)

ω = L

...
σT

|tBσ̇|t||σ̇|t||32 − 3σ̈T
|tBσ̇|tσ̈

T
|t σ̇|t||σ̇|t||2

||σ̇|t||62 + (σ̈T
|tBσ̇|tL)2

. (2c)

σ̇|t, σ̈|t and ...
σ |t are the first, second, and third derivatives of the flat output w.r.t time, respec-

tively. B :=

[
0 −1
1 0

]
is an auxiliary antisymmetric matrix for computational convenience.

Besides, v is the longitudinal velocity w.r.t vehicle’s body frame, a represents the longitude

19

acceleration, ϕ is the steering angle of the front wheels, ω is the steer angular velocity, and L is

the wheelbase.

While leveraging differential flatness can accelerate the optimization process, it should be

noted that when the velocity approaches zero, certain states such as Eq. (2b) and Eq. (2c) may

encounter singularities. By contrast, we introduce a Pseudo Arc to indirectly deriving the flat

model which fundamentally eradicates the singularity issues:

σ = γ(s), s = s(t). (3)

Here, s ∈ R+ is the Pseudo Arc. Then the finite-dimensional derivative of the flat output can

also be derived as follows:

σ̇|t = γ̇|sṡ|t, (4a)

σ̈|t = γ̇|ss̈|t + ṡ2|tγ̈|s, (4b)

...
σ |t =

...
s |tγ̇|s + 3ṡ|tγ̈|ss̈|t + ṡ3|t

...
γ |s, (4c)

γ̇|s, γ̈|s and ...
γ |s are the first, second, and third derivatives of the flat output w.r.t Pseudo Arc,

respectively. It is worth mentioning that σ̇|t represents the actual motion velocity of the robot,

while γ̇|s is defined as the Pseudo Velocity. Moreover, the physical meaning of ṡ|t ≥ 0 is the

magnitude of velocity along the Pseudo Arc.

We substitute Eq. (4a-4c) into Eq. (2a-2c), thus modifying the differential flatness model.

Taking ϕ and ω as examples, they are redefined as follows:

ϕ = arctan

(
γ̈T
|sBγ̇|sL

||γ̇|s||32

)
, (5a)

ω = L

...
γ T

|sBγ̇|s||γ̇|s||32 − 3γ̈T
|sBγ̇|sγ̈

T
|s γ̇|s||γ̇|s||2

||γ̇|s||62 + (γ̈T
|sBγ̇|sL)2

ṡ|t. (5b)

When the robot’s velocity is zero, we can set ṡ|t to zero while keeping Pseudo Velocity γ̇|s

non-zero. Consequently, the denominator of Eq. (5a-5b) are strictly positive, eliminating the

20

original singularity point. Next, we provide a detailed exposition of the parametric form of

σ(t) = γ(s(t)) based on bi-layer piece-wise polynomials.

Bi-Layer Polynomial-Based Trajectory Representation

To ensure sufficient degrees of freedom and smoothness, we parameterize γ(s) and s(t) using

piecewise polynomials, thereby establishing a compact nonlinear optimization problem. We

formulate the trajectory γ(s) as a M -piece polynomial with degree D = 2u − 1, which is

parameterized by the Pseudo Arc δs = (δs1, ..., δsM)T ∈ RM corresponding to each piece and

the coefficient matrix cp =
(
(cp1)

T, ..., (cpM)T
)T

∈ R2Mu×2. Similarly, the Pseudo Arc s(t)

is represented as a one-dimensional and time-uniform M -piece polynomial, parameterized by

the time interval for each piece δT and coefficient matrix cs =
(
(cs1)

T, ..., (csM)T
)T

∈ R2Mu.

Moreover, we consider a strict correspondence between each piece of the bi-layer piece-wise

polynomials, such that for every time interval δT , the robot should traverse the corresponding

Pseudo Arc:

s(i ∗ δT) =
i∑

j=1

δsj,∀i ∈ {1, 2, 3, ...,M}, (6)

Based on the above modeling, the i-th piece of γi is represented as:

γi(si) := (cpi)
Tβ(si −

i−1∑
j=1

δsj),

si(t) := (csi)
Tβ(t),∀t ∈ [0, δT],

(7)

where β(x) :=
(
1, x, x2, ..., xN

)T is a natural basis function. Moreover, due to the strict corre-

spondence between each piece of the bi-layer polynomials, we can further derive the following

equation from Eq. (6):

si(0) :=
i−1∑
j=1

δsj, si(δT) := si(0) + δsi (8)

21

where s1(0) is set as 0. Furturemore, the M -piece polynomial γ is obtained:

σ(t) = γ(s(t)) = γi(s(t)), s(t) = si(t− (i− 1) ∗ δT),

t ∈ [(i− 1) ∗ δT, i ∗ δT).
(9)

With motion feasibility constraints, the minimum control effort problem based on the modified

flatness model Eq. (5a-5b), incorporating first-order temporal regularization, is formulated as a

nonlinear constrained optimization:

min
cp,cs,δs,δT∈R+

J =

∫ Ts

0

σ
(u)
|t (t)Tσ

(u)
|t (t)dt+ ρTs (10a)

s.t.

B(σ|t(0)...σ
(u−1)
|t (0),σ|t(Ts)...σ

(u−1)
|t (Ts)) = 0, (10b)

T (γ1...γM , s1..., sM , δs, δT) = 0, (10c)

||γ̇s(s(t))||2 > α, (10d)

ṡ|t(t) ≥ 0, (10e)

G(γ(s(t)), ...,γ(u)
|s (s(t)), s(t), ..., s

(u)
|t (t)) ⪯ 0, (10f)

u = 3 is the control dimension and ρ ∈ R+ is a user-defined weight for the time regulariza-

tion term to restrict the total duration Ts. Eq. (10b) is the boundary condition representing the

initial and final state constraints of the trajectory. Eq. (10c) denotes the continuity constraints

at the junctions of the piece-wise polynomials. Eq. (10d) is a minimum Pseudo Velocity con-

straint introduced to avoid singularities, where α is a threshold value. Eq. (10e) correspond

to positive-definite constraints on Pseudo Velocity. G encompasses common inequality con-

straints considered in trajectory planning problems, including dynamic feasibility and obstacle

avoidance constraints.

22

References

[1] E. A. Capaldi, G. E. Robinson, S. E. Fahrbach, Neuroethology of spatial learning: the

birds and the bees, Annual review of psychology 50, 651–682 (1999).

[2] J. Wiener, S. Shettleworth, V. P. Bingman, K. Cheng, S. Healy, L. F. Jacobs, K. J. Jeffery,

H. A. Mallot, R. Menzel, N. S. Newcombe, Animal thinking: Contemporary issues in

comparative cognition (The MIT Press, 2011), pp. 51–76.

[3] K. M. Chu, S. H. Seto, I. N. Beloozerova, V. Marlinski, Strategies for obstacle avoidance

during walking in the cat, Journal of Neurophysiology 118, 817–831 (2017).

[4] M. I. Sereno, R.-S. Huang, A human parietal face area contains aligned head-centered

visual and tactile maps, Nature neuroscience 9, 1337–1343 (2006).

[5] B. A. Wandell, S. O. Dumoulin, A. A. Brewer, Visual field maps in human cortex, Neuron

56, 366–383 (2007).

[6] C. D. Harvey, F. Collman, D. A. Dombeck, D. W. Tank, Intracellular dynamics of hip-

pocampal place cells during virtual navigation, Nature 461, 941–946 (2009).

[7] A. D. Ekstrom, S. Y. Bookheimer, Spatial and temporal episodic memory retrieval recruit

dissociable functional networks in the human brain, Learning & memory 14, 645–654

(2007).

[8] R. A. Epstein, C. I. Baker, Scene perception in the human brain, Annual review of vision

science 5, 373–397 (2019).

[9] S. K. Debnath, R. Omar, N. B. A. Latip, S. Shelyna, E. Nadira, C. Melor, T. K.

Chakraborty, E. Natarajan, A review on graph search algorithms for optimal energy ef-

23

ficient path planning for an unmanned air vehicle, Indonesian Journal of Electrical Engi-

neering and Computer Science 15, 743–749 (2019).

[10] M. van Nieuwstadt, M. Rathinam, R. M. Murray, Differential flatness and absolute equiva-

lence, Proceedings of 1994 33rd IEEE Conference on Decision and Control (IEEE, 1994),

vol. 1, pp. 326–332.

[11] B. Li, T. Acarman, Y. Zhang, Y. Ouyang, C. Yaman, Q. Kong, X. Zhong, X. Peng,

Optimization-based trajectory planning for autonomous parking with irregularly placed

obstacles: A lightweight iterative framework, IEEE Transactions on Intelligent Trans-

portation Systems 23, 11970-11981 (2022).

[12] R. He, J. Zhou, S. Jiang, Y. Wang, J. Tao, S. Song, J. Hu, J. Miao, Q. Luo, TDR-OBCA: A

reliable planner for autonomous driving in free-space environment, 2021 American Con-

trol Conference (ACC) (IEEE, 2021), pp. 2927–2934.

[13] X. Zhang, A. Liniger, A. Sakai, F. Borrelli, Autonomous parking using optimization-based

collision avoidance, 2018 IEEE Conference on Decision and Control (CDC) (2018), pp.

4327–4332.

[14] S. Zhang, Z. Jian, X. Deng, S. Chen, Z. Nan, N. Zheng, Hierarchical motion planning for

autonomous driving in large-scale complex scenarios, IEEE Transactions on Intelligent

Transportation Systems 23, 13291–13305 (2021).

[15] R. Pepy, A. Lambert, H. Mounier, Path planning using a dynamic vehicle model, 2006 2nd

International Conference on Information & Communication Technologies (IEEE, 2006),

vol. 1, pp. 781–786.

24

[16] A. Bry, N. Roy, Rapidly-exploring random belief trees for motion planning under uncer-

tainty, Proc. of the IEEE Intl. Conf. on Robot. and Autom. (Shanghai, China, 2011), pp.

723–730.

[17] S. Karaman, E. Frazzoli, Sampling-based algorithms for optimal motion planning, The

international journal of robotics research 30, 846–894 (2011).

[18] M. Phillips, M. Likhachev, Sipp: Safe interval path planning for dynamic environments,

2011 IEEE international conference on robotics and automation (IEEE, 2011), pp. 5628–

5635.

[19] D. Dolgov, S. Thrun, M. Montemerlo, J. Diebel, Path planning for autonomous vehicles in

unknown semi-structured environments, The International Journal of Robotics Research

29, 485–501 (2010).

[20] Z. Ren, S. Rathinam, M. Likhachev, H. Choset, Multi-objective safe-interval path planning

with dynamic obstacles, IEEE Robotics and Automation Letters 7, 8154–8161 (2022).

[21] J. D. Gammell, S. S. Srinivasa, T. D. Barfoot, Informed RRT*: Optimal sampling-based

path planning focused via direct sampling of an admissible ellipsoidal heuristic, Proc. of

the IEEE/RSJ Intl. Conf. on Intell. Robots and Syst. (Chicago, IL, 2014), pp. 2997–3004.

[22] D. J. Webb, J. van den Berg, Kinodynamic RRT*: Asymptotically optimal motion plan-

ning for robots with linear dynamics, 2013 IEEE International Conference on Robotics

and Automation (2013), pp. 5054–5061.

[23] R. Yonetani, T. Taniai, M. Barekatain, M. Nishimura, A. Kanezaki, Path planning us-

ing neural a* search, International conference on machine learning (PMLR, 2021), pp.

12029–12039.

25

[24] J. Huh, D. D. Lee, V. Isler, Learning continuous cost-to-go functions for non-holonomic

systems, 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS) (IEEE, 2021), pp. 5772–5779.

[25] J. Wang, X. Jia, T. Zhang, N. Ma, M. Q.-H. Meng, Deep neural network enhanced

sampling-based path planning in 3d space, IEEE Transactions on Automation Science and

Engineering 19, 3434–3443 (2021).

[26] D. Kim, K. Huh, Neural motion planning for autonomous parking, International Journal

of Control, Automation and Systems 21, 1309–1318 (2023).

[27] A. H. Qureshi, A. Simeonov, M. J. Bency, M. C. Yip, Motion planning networks, 2019

International Conference on Robotics and Automation (ICRA) (IEEE, 2019), pp. 2118–

2124.

[28] J. J. Johnson, L. Li, F. Liu, A. H. Qureshi, M. C. Yip, Dynamically constrained motion

planning networks for non-holonomic robots, 2020 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS) (IEEE, 2020), pp. 6937–6943.

[29] L. Li, Y. Miao, A. H. Qureshi, M. C. Yip, Mpc-mpnet: Model-predictive motion planning

networks for fast, near-optimal planning under kinodynamic constraints, IEEE Robotics

and Automation Letters 6, 4496–4503 (2021).

[30] J. J. Johnson, U. S. Kalra, A. Bhatia, L. Li, A. H. Qureshi, M. C. Yip, Motion plan-

ning transformers: A motion planning framework for mobile robots, arXiv preprint

arXiv:2106.02791 (2021).

[31] F. Gómez-Bravo, F. Cuesta, A. Ollero, A. Viguria, Continuous curvature path generation

based on β-spline curves for parking manoeuvres, Robotics and autonomous systems 56,

360–372 (2008).

26

[32] A. Gupta, R. Divekar, Autonomous parallel parking methodology for ackerman configured

vehicles, ACEEE International Journal on Communication 1, 1–6 (2010).

[33] C. Sungwoo, C. Boussard, B. d’Andréa Novel, Easy path planning and robust control for

automatic parallel parking, IFAC Proceedings Volumes 44, 656–661 (2011).

[34] W. Lim, S. Lee, M. Sunwoo, K. Jo, Hybrid trajectory planning for autonomous driving in

on-road dynamic scenarios, IEEE Transactions on Intelligent Transportation Systems 22,

341–355 (2019).

[35] W. Ding, L. Zhang, J. Chen, S. Shen, Safe trajectory generation for complex urban envi-

ronments using spatio-temporal semantic corridor, IEEE Robotics and Automation Letters

(2019).

[36] B. Li and Z. Shao, A unified motion planning method for parking an autonomous vehicle in

the presence of irregularly placed obstacles, Knowledge-Based Systems 86, 11–20 (2015).

[37] K. Bergman, D. Axehill, Combining homotopy methods and numerical optimal control to

solve motion planning problems, 2018 IEEE Intelligent Vehicles Symposium (IV) (IEEE,

2018), pp. 347–354.

[38] S. Shi, Y. Xiong, J. Chen, C. Xiong, A bilevel optimal motion planning (bomp) model

with application to autonomous parking, International Journal of Intelligent Robotics and

Applications 3, 370–382 (2019).

[39] X. Zhang, A. Liniger, A. Sakai, F. Borrelli, Autonomous parking using optimization-based

collision avoidance, 2018 IEEE Conference on Decision and Control (CDC) (IEEE, 2018),

pp. 4327–4332.

27

[40] C. Sun, Q. Li, B. Li, L. Li, A successive linearization in feasible set algorithm for vehicle

motion planning in unstructured and low-speed scenarios, IEEE Transactions on Intelli-

gent Transportation Systems 23, 3724–3736 (2021).

[41] Z. Han, Y. Wu, T. Li, L. Zhang, L. Pei, L. Xu, C. Li, C. Ma, C. Xu, S. Shen, F. Gao,

An efficient spatial-temporal trajectory planner for autonomous vehicles in unstructured

environments, IEEE Transactions on Intelligent Transportation Systems pp. 1–18 (2023).

[42] I. Lugo-Cárdenas, G. Flores, S. Salazar, R. Lozano, Dubins path generation for a fixed

wing uav, 2014 International conference on unmanned aircraft systems (ICUAS) (IEEE,

2014), pp. 339–346.

[43] R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object

detection and semantic segmentation, Proceedings of the IEEE conference on computer

vision and pattern recognition (2014), pp. 580–587.

[44] M. Tanelli, M. Corno, S. Saveresi, Modelling, simulation and control of two-wheeled ve-

hicles (John Wiley & Sons, 2014).

28

